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Introduction 

 Aim of this work is to derive the equation of motion for vehicle with trailer. Derived 

equation of motion will be verified by comparison of the natural frequencies computed in 

Matlab with the natural frequencies computed in MSC.adams. 

 Other task is to simulate the transition trough the bump modelled as half sine. Results 

from simulation will bee also verified in MSC.adams. 

 Trailer is used for cargo transportation. Has two axels with rubber torsion springs and 

is shown on the figure 1.: 

 

 
Figure 1. Trailer 



Problem description: 

1. Construction of the mathematical model and derivation of the equation of motion. 

2. Computation of the natural frequencies and mode shapes in Matlab environment. 

3. Construction of the alternative model in MSC.adams environment and computation of 

 the natural frequencies and mode shapes. 

4. Comparison of the natural frequencies and mode shapes results. 

5. Road input definition and model response simulation in Matlab. 

6. Road input definition and model response simulation in MSC.adams. 

7. Comparison of the model response results. 

 

Assumptions: 

1. Vehicle and trailer are symmetric with respect to longitudinal axis therefore half vehicle 

trailer model will be investigated. 

2. Model is linearized due to small angle assumptions. 

3. Damping of the wheels is neglected. 

4. Stiffness, damping, inertia parameters and the position of the centres of the gravity are 

not corresponding to the investigated vehicle and trailer but are chosen approximately. 

5. Positions of the springs and position of the coupling between vehicle and trailer are 

measured. 

6. Damping and stiffness characteristic of the vehicles dashpots and springs are linear. 

 

1.  Construction of the mathematical model and derivation of the equation 

 of motion 

 To build the mathematical model three degrees of freedom were considered. One 

translational degree of freedom - vertical displacement of the vehicles centre of the gravity 

and two rotational degrees of freedom - rotation of the vehicles and trailers centres of the 

gravity. 

 Equation of motion were obtained directly from relations for kinetic and potential 

energy. Centre of the coordinate system was set to the vehicles centre of the gravity. 

 Coordinates of the vehicle and trailer centre of the gravity were calculated with respect 

to the coupling between the vehicle and trailer. Derivatives of this coordinates were used to 

compute the kinetic energy. 

 Potential energy was computed from the spring deflection. 



 Figure 2. represents the mathematical model of the vehicle with trailer: 

 
Figure 2. Half vehicle trailer model 

 

 Coordinates of the vehicle and trailer centre of the gravity: 
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 Derivatives of the coordinates of the vehicle and trailer centre of the gravity: 
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 Expression for the kinetic energy: 
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 Kinetic energy expression after algebraic operations and linearization: 
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 Coordinates of the vertical spring displacement: 
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 Expression for the potential energy: 
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 Potential energy expression after algebraic operations and linearization: 
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 Mass and stiffness matrix were obtained directly from the kinetic and potential energy 

by following formulas: 
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 Resulting mass and stiffness matrixes are: 
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 Corresponding equations of motion can be written in matrix form: 

 

(,- + +, = .,         ,- = 0�-��- ��- 
1 , , = 0�����
1 ,         . = 00001  
 

2.  Computation of the natural frequencies in Matlab environment 

 Mass and stiffness matrixes were constructed in Matlab. Command eig(K,M) was used 

to compute natural frequencies and mode shapes. Script is included in appendix where are 

also shown the values of used parameters 

 Natural frequencies computed in Matlab are: 

 2� =  1.2874 78  2
 =  1.5179 78 2 =  3.1989 78 

  

3.  Construction of the alternative model in MSC.adams environment and 

 computation of the natural frequencies 

 MSC.adams is a simulation software for multi-body dynamics. Its capabilities are much 

higher than our problem requires. Goal is to make a model that corresponds as much as 

possible to the model from Matlab. 

 Our model consists of two parts that represent vehicle and trailer. Parts are connected by 

rotational joint that describes the coupling between vehicle and trailer. Four springs are 

connected to the parts and to the ground. 

 Dimensional parameters (position of the springs, coupling and centres of the gravity), 

stiffness parameters of the springs and the inertia parameters (masses and moments of inertia) 

are equal to parameters used in Matlab. 

 To the vehicles centre of the gravity is connected mass less part by rotational joint. This 

part is also connected by translational joint to the ground. This solution allows to the vehicle 

rotational and vertical translational degree of freedom and the third degree of freedom is the 

rotation of the trailer. This composition corresponds as much as possible to the model from 

Matlab. 

 

 



 Figure 3. shows the model build in MSC.adams. 

 
Figure 3. Model build in MSC.adams. 

 

 Natural frequencies computed in MSC.adams are: 

 2� =  1.28624 78,  2
 =  1.51759 78 2 =  3.19785 78. 

 

4.  Comparison of the natural frequencies and mode shapes results. 

 Absolute differences between natural frequencies computed in Matlab and in 

MSC.adams are: 

 |∆2�| = 0.0012 78   |∆2
| =  0.00027076 78  |∆2 | =  0.0011 78 



 This results are very satisfying and they indicates that equation of motion are correct. 

Comparison of the mode shapes is displayed on the figure 4.: 

 

 
Figure 4. Mode shapes visualization left MSC.adams, right Matlab 

 

5.  Road input definition and model response simulation in Matlab. 

5.1.  Introduction of damping into the model 

 Damping matrix is equivalent with the stiffness matrix and can be written in the form: 
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Our equation of motion including the damping matrix has a form: 
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5.2.  Definition of road profile and corresponding input functions 

 Our target is to simulate transition of the vehicle with trailer trough a bump. Bump is 

modelled as a half-sine with characteristic height and length. Bump is shown on the figure 4.: 

 

 
Figure 4. Dimensions of the bump 

 

 To model the transition of the vehicle with trailer trough the bump we assume constant 

velocity. Our modelling approach is based on four input function. Figure 5. represents times at 

approaching and leaving the bump for each wheel. Computed times are based on vehicles and 

trailers dimensions and on the velocity. Small d stands for the length of the bump. 

 

 Time at approaching [s] Time at leaving [s] 

Vehicles front wheel ��,@ = 0 ��,A = BC 

Vehicles back wheel �
,@ = �� + �
C  �
,A = �� + �
 + BC  

Trailers front wheel � ,@ = �� + �� + � C  � ,A = �� + �� + � + BC  

Trailers back wheel �!,@ = �� + �� + �!C  �!,A = �� + �� + �! + BC  

 

Figure 5. Times at approaching and leaving the bump 



 To make the input functions act with respect to the times when the wheel pass through 

the bump we have created following functions: 

  D�(�) = 1 → �2   ��,A > � ≥ ��,@ → H�H D�(�) = 0 D
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D!(�) = 1 → �2   �!,A > � ≥ �!,@ → H�H D�(�) = 0 

 

 With the help of previous functions we can define the input functions in following way 

where h stands for the height of the bump and d stands for the length of the bump 
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 To build the forces resulting from damping that are proportional to the velocities, 

derivatives of input functions will be required: 
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Figure 6. represents the input functions and their derivatives with respect to time: 

 

 
Figure 6. Input functions (up) and their derivatives (down) with respect to time 

 

5.3.  Assignment of the input functions to the degrees of freedom 

 Virtual work performed on virtual displacements may be written in following way: 

 

 VW = #�8�V�� + #
8
V�
 + # 8 V� + #!8!V�!+��8��V�� + �
8�
V�
 + � 8� V� + �!8�!V�! 

 V�� = V�� − V���� V�
 = V�� + V���
 V� = V�� + V���� + V�
�  V�! = V�� + V���� + V�
�! 



 Introducing the relations for virtual displacements into relation for virtual work and 

after algebraic operations we obtain: 
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 From previous equation is obvious that resulting force vector may be written as: 
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 Finally our equations of motion in matrix form are: 
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5.4.  State space formulation 

 By expressing the acceleration vector from equation of motion in matrix form we 

 obtain: 

 ,- = −(Z[?,� − (Z[+, + (Z[X, ,� = ,�  
 

 State space formulation may be written in a form: 
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à�����
����� ��� 
bc

cc
cd +

_̀
`̀
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5.5.  Simulation in Matlab 

 State space matrixes were build and simulation for one second with 1000 steps was 

performed. Used script is included in appendix. Figure 7. represents the results of the rotations 

and displacement of the degrees of freedom: 

 

 
Figure 7. Displacements and rotations of the degrees of freedom  

 

 Figure 8. shows the spring deflections with respect to time and the displacement of the 

trailers centre of the gravity. 

 Spring deflections and displacement of the trailers centre of the gravity were 

computed by following expressions: 
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 Figure 7. Displacement of the trailers centre of the gravity and deflections of the springs 

 



6.  Road input definition and model response simulation in MSC.adams 

 Our modelling approach in MSC.adams was straight forward. To model a bump we 

took the points generated in Matlab ( points that creates figure 4. ) and put them into the 

MSC.adams as a construction pints. 

 Addition construction point were build to create flat road behind and in front of the 

bump. All the construction points were connected by poly-line what created new part. 

 Springs were attached to the ends of the mass less parts. Other ends of the mass less 

parts were connected to the poly-line by point to curve constrain. Finally the mass less parts 

were attached to the ground by vertical translational joint. Their purpose is to transmit the 

kinematic excitations into the model. 

 The poly-line part was connected to ground by horizontal translation joint and to this 

joint was prescribed the translational joint motion with velocity equal to the velocity used in 

Matlab simulation. 

 The damping values were prescribed for each spring according to the values used in 

Matlab simulation. 

 Duration of the simulation was set to one second and time step was set to 1000 steps. 

 Simulation was started from static equilibrium. 

 Two measures were created. First represents the vertical displacement of the vehicles 

centre of the gravity and second represents the vertical displacement of the trailers centre of 

the gravity. 

 Figure 8. represents the model used for simulation with description of each components 

and figure 9. represents the results of the measures. 



 
Figure 8. Model used for simulation in MSC.adams 

 
Figure 9. Results from simulation performed in MSC.adams 

Bump and flat line created by poly-line 

Horizontal translational joint of the 
poly-line with prescribed motion 

One of the mass less parts 
with vertical translational joint 

One of the point to curve constrain 
between poly-line and mass less part 



7.  Comparison of the model response results. 

 Results from MSC.adams were generated and imported into Matlab. Results from 

MSC.adams have a certain offset due to the start from static equilibrium what caused springs 

to deflect. This offset was deleted and results were plotted in one graph. This graph represents 

figure 10.: 

 
Figure 10. Comparison of the simulation results. 

 

 From the figure 10 is visible that results are matched very accurately. That indicates 

that our modelling strategy including the definition of the input function, state space 

formulation and other factors was correct. Figure 10. shows only the centre of the gravity 

displacements comparison. Displacement of the trailers centre of the gravity is computed by 

relation between all three degrees of freedom. Fact that the displacement of the trailers centre 

of the gravity is correctly computed according to the comparison with MSC.adams results, 

implies that results for rotational degrees of freedom are correct as well. 

 



Summary 

 Equations of motion were derived directly from relations for kinetic and potential 

energy. Their correctness was validated by comparison of natural frequencies computed in 

Matlab and in MSC.adams. Results matched with very small difference. 

 Other task was to simulate the transition of the vehicle with trailer trough the bump. 

Bump was modelled as a half sine. Input functions were build and simulation performed. 

 Alternative model was created in MSC.adams with attempt to imitate the conditions 

used in Matlab model. After comparison of the simulations performed in different 

environments, results matched again with very small difference. 

 By taking the results from MSC.adams as a reference results, is our modelling strategy 

confirmed as a correct what gives us an engineering satisfaction. 

  



Appendix 

Matlab script:  

 
clc  
clf  
clear all  
  
%% Parameters  
L1=2;           %length dimension (see report for figure)  
L2=3;  
mi1=2;  
mi2=1.5;  
mi3=2.65;  
mi4=3.35;  
  
m1=1200;        %mass of the vehicle  
m2=700;         %mass of the trailer  
I1=3000;        %moment of inertia of the vehicle  
I2=1200;        %moment of inertia of the trailer  
  
k1=42000;       %spring stiffness  
k2=48000;  
k3=160000;  
k4=160000;  
  
c1=6100;        %viscous damping coefficient  
c2=6400;  
c3=6000;  
c4=6000;  
  
%% Mass matrix  
m11=m1+m2; 
m12=m2*L1;  
m13=m2*L2;  
m22=m2*L1*L1+I1;  
m23=m2*L1*L2;  
m33=m2*L2*L2+I2;  
M=[m11 m12 m13;m12 m22 m23;m13 m23 m33];  
  
%% Stiffness matrix  
k11=k1+k2+k3+k4;  
k12=-k1*mi1+k2*mi2+k3*L1+k4*L1;  
k13=k3*mi3+k4*mi4;  
k22=k1*mi1*mi1+k2*mi2*mi2+k3*L1*L1+k4*L1*L1;  
k23=k3*L1*mi3+k4*L1*mi4;  
k33=k3*mi3*mi3+k4*mi4*mi4;  
K=[k11 k12 k13;k12 k22 k23;k13 k23 k33];  
  
%% Natural frequencies%  
[PHI, LAMBDA]=eig(K,M);  
f=sqrt(LAMBDA)/(2*pi);  
f1=f(1,1);  
f2=f(2,2);  
f3=f(3,3);  
  
 
 
 



%% ADAMS results%  
f1A=1.286240;  
f2A=1.517599;  
f3A=3.197859;  
  
%% Absolute difference%  
miss1=abs(f1-f1A);  
miss2=abs(f2-f2A);  
miss3=abs(f3-f3A);  
  
%% Mode shapes visualization  
phi_1=PHI(:,1);  
phi_2=PHI(:,2);  
phi_3=PHI(:,3);  
  
figure(1)  
plot(phi_1, '- .'  , 'LineWidth' ,2, 'MarkerSize' ,20)  
grid on 
hold on 
plot(phi_2, '- .g' , 'LineWidth' ,2, 'MarkerSize' ,20)  
grid on 
hold on 
title( 'Mode shapes' )  
plot(phi_3, '- .r' , 'LineWidth' ,2, 'MarkerSize' ,20)  
legend( 'Mode 1' , 'Mode 2' , 'Mode 3' )  
grid on 
hold on 
  
%% Damping matrix  
c11=c1+c2+c3+c4;  
c12=-c1*mi1+c2*mi2+c3*L1+c4*L1;  
c13=c3*mi3+c4*mi4;  
c22=c1*mi1*mi1+c2*mi2*mi2+c3*L1*L1+c4*L1*L1;  
c23=c3*L1*mi3+c4*L1*mi4;  
c33=c3*mi3*mi3+c4*mi4*mi4;  
CC=[c11 c12 c13;c12 c22 c23;c13 c23 c33];  
  
%% State space matrixes  
OsA=zeros(size(M));          
Is=eye(size(M));            
A=[OsA Is;-M^(-1)*K -M^(-1)*CC];   
B=[OsA;M^(-1)];                   
C=[Is OsA];                                          
D=zeros(size(C,1),size(B,2));  
  
%% Input functions  
t=0:1/999:1;                               %time interval                        
  
h0=0.1;                                    %height of the bump  
d=0.5;                                     %length of the bump  
v=12;                                      %velocity  
omg=(pi*v)/d;  
  
t2_start=(mi1+mi2)/v;               %time at approaching the bump (2.wheel)  
t3_start=(mi1+L1+mi3)/v;            %time at approaching the bump (3.wheel)  
t4_start=(mi1+L1+mi4)/v;            %time at approaching the bump (4.wheel)  
     
 
 
 



z1=U1(t).*h0.*sin(t*omg);                  %input functions  
z2=U2(t).*h0.*sin((t-t2_start)*omg);  
z3=U3(t).*h0.*sin((t-t3_start)*omg);  
z4=U4(t).*h0.*sin((t-t4_start)*omg);  
  
figure(2)  
plot(t,z1,t,z2,t,z3,t,z4)  
xlabel( 'Time' )  
ylabel( 'z1, z2, z3, z4' )  
  
dz1=U1(t).*omg.*h0.*cos(t*omg);            %derivatives of input functions  
dz2=U2(t).*omg.*h0.*cos((t-t2_start)*omg);  
dz3=U3(t).*omg.*h0.*cos((t-t3_start)*omg);  
dz4=U4(t).*omg.*h0.*cos((t-t4_start)*omg);  
  
figure(3)  
plot(t,dz1,t,dz2,t,dz3,t,dz4)  
xlabel( 'Time' )  
ylabel( 'dz1, dz2, dz3, dz4' )  
  
%% Forces assigned to the DOFs  
f1=k1*z1+k2*z2+k3*z3+k4*z4+c1*dz1+c2*dz2+c3*dz3+c4* dz4;  
f2=-mi1*k1*z1+mi2*k2*z2+L1*k3*z3+L1*k4*z4-
mi1*c1*dz1+mi2*c2*dz2+L1*c3*dz3+L1*c4*dz4;  
f3=mi3*k3*z3+mi4*k4*z4+mi3*c3*dz3+mi4*c4*dz4;  
  
F=[f1;f2;f3];  
  
%% Simulation and results in time domain  
sys=ss(A,B,C,D);    
y=lsim(sys,F,t);     
  
figure(4)  
subplot(4,1,1)  
plot(t,y(:,1))  
grid  
xlabel( 'Time' )  
ylabel( 'y1' )  
subplot(4,1,2)  
plot(t,y(:,2))  
grid  
xlabel( 'Time' )  
ylabel( 'phi1' )  
subplot(4,1,3)  
plot(t,y(:,3))  
grid  
xlabel( 'Time' )  
ylabel( 'phi2' )  
  
y2=y(:,1)+L1.*y(:,2)+L2.*y(:,3);   %Trailers centre of gravity displacement  
  
subplot(4,1,4)  
plot(t,y2)  
grid  
xlabel( 'Time' )  
ylabel( 'y2' )  
  
 
 



a1=y(:,1)-mi1.*y(:,2);              %Deflection of the springs  
a2=y(:,1)+mi2.*y(:,2);  
a3=y(:,1)+L1.*y(:,2)+mi3.*y(:,3);  
a4=y(:,1)+L1.*y(:,2)+mi4.*y(:,3);  
  
  
figure(5)  
subplot(4,1,1)  
plot(t,a1)  
grid  
xlabel( 'Time' )  
ylabel( 'a1' )  
subplot(4,1,2)  
plot(t,a2)  
grid  
xlabel( 'Time' )  
ylabel( 'a2' )  
subplot(4,1,3)  
plot(t,a3)  
grid  
xlabel( 'Time' )  
ylabel( 'a3' )  
subplot(4,1,4)  
plot(t,a4)  
grid  
xlabel( 'Time' )  
ylabel( 'a4' )  
  
%% Comparison with Adams results  
  
data_1=load( 'ADAMS_Y_1.tab' );     % Adams data import (see included data)  
t_ad=data_1(:,1);                         
y1_ad=data_1(:,2);                         
data_2=load( 'ADAMS_Y_2.tab' );                            
y2_ad=data_2(:,2);  
  
%% Correction of results from Adams due to static c ompression of springs  
  
delta_y1=y(1,1)-y1_ad(1,1);  
y1_ad_red=y1_ad+delta_y1;  
  
delta_y2=y2(1,1)-y2_ad(1,1);  
y2_ad_red=y2_ad+delta_y2;  
  
  
figure(6)  
subplot(2,1,1)  
plot(t_ad,y1_ad_red,t,y(:,1));  
grid  
xlabel( 'Time' )  
ylabel( 'y1 adams, y1 matlab' )  
legend( 'y1 adams' , 'y1 matlab' )  
subplot(2,1,2)  
plot(t_ad,y2_ad_red,t,y2);  
grid  
xlabel( 'Time' )  
ylabel( 'y2 adams, y2 matlab' )  
legend( 'y2 adams' , 'y2 matlab' )  
 



.m functions: 
 
function  u1 = U1(t)  
 
d=0.5;  
v=12;  
t1_start=0;  
t1_end=d/v;  
 
u1=(t >= t1_start & t < t1_end);  
end  
 
 
function  u2 = U2(t)  
d=0.5;  
mi1=2;  
mi2=1.5;  
v=12;  

 
t2_start=(mi1+mi2)/v;  
t2_end=(d+mi1+mi2)/v;  
  
u2=(t >= t2_start & t < t2_end);  
end  
  
 
function  u3 = U3(t)  
  
d=0.5;  
L1=2;  
mi1=2;  
mi3=2.65;  
v=12;  
  
t3_start=(mi1+L1+mi3)/v;  
t3_end=(d+mi1+L1+mi3)/v;  
  
u3=(t >= t3_start & t < t3_end);  
end  
 
 
function  u4 = U4(t)  
  
d=0.5;  
L1=2;  
mi1=2;  
mi4=3.35;  
v=12;  
  
t4_start=(mi1+L1+mi4)/v;  
t4_end=(d+mi1+L1+mi4)/v;  
  
u4=(t >= t4_start & t < t4_end);  
end  
 


