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Problem description: 

 The main goal of this work is to evaluate the material properties of uni-directional 

glass-epoxy composite. To estimate this properties, analytical and finite element approach 

were chosen. 

 Analytical approach represents the methods of Mori-Tanaka and Hashin-Shtrikman 

bounds. To compute required material properties, provided software for analytical 

computations (Compcomp) was used. 

 Finite element approach is based on periodic homogenization. Proper periodicity and 

symmetry boundary conditions were applied on the unit cell and sufficient number of 

independent material parameters were estimated. For this purpose was used a finite element 

software (Calculix). 

 Glass fibers and epoxy matrix are isotropic materials and their elastic and thermal 

material properties are shown in fig. 1. The fiber volume fraction is 0.4. 

 

Glass Epoxy 
Elastic modulus 

[GPa] 
CTE 
[K-1] 

Poisson constant 
[-] 

Elastic modulus 
[GPa] 

CTE 
[K-1] 

Poisson constant 
[-] 

80 4.9 10-6 0.2 1.35 130 10-6 0.3 

 
Fig. 1. Material parameters of the glass-epoxy composite 

 

Figure 2. represent examinated unit cell with its characteristic dimension and master nodes: 
 

 
Fig. 2. Unit cell dimensions and master nodes 

a = 2m 

b = 1.73m c = 0.1m 
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2001. 

 10001. 



Longitudinal tension 

 Boundary conditions for master nodes are showed in the figure 3. Note that load is for 

every load case equal  ܨ ൌ  .ܰܭ	1767,5

Corresponding 
modulus 

Master nodes 
x-displacement 

[m] 
y-displacement 

[m] 
z-displacement 

[m] 

El 

1 (0,0,0) FIXED FIXED FIXED 
1348 (0, 1.73,0) FIXED FREE FIXED 

2001 (2,0,0) FREE FIXED FIXED 
10001 (0,0, 0.1) FREE FREE LOAD 

 
Fig. 3. Boundary conditions for longitudinal tension 

 

 Master nodes displacements are showed in the figure 4.: 

Corresponding 
modulus 

Master nodes 
x-displacement 

[m] 
y-displacement 

[m] 
z-displacement 

[m] 

El 

1 (0,0,0) 0 0 0 
1348 (0, 1.73,0) 0 -6.7850e-06 0 

2001 (2,0,0) -7.8347e-06 0 0 
10001 (0,0, 0.1) 0 0 1.5549e-06 

 
Fig. 4. Master nodes displacements for longitudinal tension 

  

 Computation of the longitudinal tension modulus: 

 

ܨ
ܽ ∙ ܾ

ൌ ௟ܧ ∙
ଵ଴଴଴ଵݖ
ܿ

→ ௟ܧ ൌ
ܿ ∙ ܨ

ܽ ∙ ܾ ∙ ଵ଴଴଴ଵݖ
ൌ

0.1 ∙ 1,7675 ∙ ݁଺

2 ∙ 1.73 ∙ 1.5549 ∙ eെ6
ൌ 3.2815 ∙ e10	ܲܽ 

 

 Computation of the longitudinal poisson ratio: 

 

௧௟ߥ ൌ െ
௧௧ߝ
௟௟ߝ

ൌ

ଵଷସ଼ݕ
ܾ

ଵ଴଴଴ଵݖ
ܿ

ൌ െ

െ6.7850 ∙ eെ6

1.73
1.5549 ∙ eെ6

0.1

ൌ 	0.2519 

 

  

 

 

 



Analytical results in comparison with numerical results for longitudinal tension 

 Figure 5. represents analytical results from compcomp in comparison with the result 

from Calculix. As was expected lower bounds are identical with Mori-Tanaka estimates and 

numerical result lies in the bounds range. That indicates correct results.. 

 The difference between lower and upper bounds is for longitudinal elastic modulus 

very small and in whole fiber volume scale almost identical, therefore zoomed scale was 

chosen to show results adequately. 

 
 

 Fig. 5. Comparison of the analytical and numerical results for longitudinal tension 

 
Analytical results in comparison with numerical results for longitudinal poisson ratio 

 Figure 6. represents analytical results from compcomp in comparison with the result 

from Calculix. Upper  bounds are identical with Mori-Tanaka estimates and numerical result 

lies in the bounds range. That indicates correct results. 

  

 
 

Fig. 6. Comparison of the analytical and numerical results for longitudinal poisson ratio  



Unit cell deformation for longitudinal tension 

 On the figure 7. are displayed deformed and undeformed shape of the unit cell for 

longitudinal tension. 

 Applied force in longitudinal direction extends the unit cell and the contraction in the 

transverse direction and in the direction normal to the transverse direction is caused by 

poisson effect.  

 Shape of the unit cell is block after the deformation so the periodic and symmetry 

boundary conditions are fulfilled. 

 Deformed shape is scaled with factor of 100 000 to make the deformation visible. 

 

Fig. 7. Unit cell deformation for longitudinal tension 

 

Mean field stress in comparison with micro field stresses for longitudinal tension 

 On the figure 8. are shown micro stress fields ߪ௟௟ and ߪ௧௤. Due to the periodic 

boundary condition and boundary conditions that represent longitudinal tension have to be 

fibers and matrix deformed by equal length. 

 Since the matrix has lower Young's modulus than fibers, resulting stresses are higher 

in fibers and lower in matrix. Mentioned boundary conditions and differences in Young's 

modulus of the fibers and matrix causes also shear stresses in the unit cell 



 

 
Fig. 8. Micro field stresses for longitudinal tension ߪ௟௟ (left), ߪ௧௤(right) 

 Figure 9. represents the micro field stresses  ߪ௧௧ and ߪ௤௤. Poisson effect boundary 

conditions and differences in stiffness of the matrix and the fibers causes stress distribution 

where fibers are compressed and matrix tensed.

 

Fig. 9. Micro field stresses for longitudinal tension ߪ௧௧ (left), ߪ௤௤(right) 

 Mean stress in longitudinal direction is ߪ௟௟ ൌ 5.1023 ∙ eହܲܽ. I comparison with the 

stress range by micro field stress is visible the effect of the homogenization. 



Transverse tension 

 Boundary conditions for master nodes are showed in the figure 10.  

Corresponding 
modulus 

Master nodes 
x-displacement 

[m] 
y-displacement 

[m] 
z-displacement 

[m] 

Et 

1 (0,0,0) FIXED FIXED FIXED 
1348 (0, 1.73,0) FIXED FREE FIXED 

2001 (2,0,0) LOAD FIXED FIXED 
10001 (0,0, 0.1) FREE FREE FREE 

 
Fig. 10. Boundary conditions for transverse tension 

 

 Master nodes displacements are showed in the figure 11.: 

Corresponding 
modulus 

Master nodes 
x-displacement 

[m] 
y-displacement 

[m] 
z-displacement 

[m] 

Et 

1 (0,0,0) 0 0 0 
1348 (0, 1.73,0) 0 -2.3386e-03 0 

2001 (2,0,0) 6.9503e-03 0 0 
10001 (0,0, 0.1) 0 0 -7.8347e-06 

 
Fig. 11. Master nodes displacements for transverse tension 

  

 Computation of the transverse tension modulus: 

 

ܨ
ܿ ∙ ܾ

ൌ ௧ܧ ∙
ଶ଴଴ଵݔ
ܽ

→ ௧ܧ ൌ
ܽ ∙ ܨ

ܿ ∙ ܾ ∙ ଶ଴଴ଵݔ
ൌ

2 ∙ 1,7675 ∙ ݁଺

0.1 ∙ 1.73 ∙ 6.9503 ∙ eെ3
ൌ 2.9365 ∙ e9	ܲܽ 

 

 Computation of the transverse poisson ratio: 

 

௤௧ߥ ൌ െ
௤௤ߝ
௧௧ߝ

ൌ

ଵଷସ଼ݕ
ܾ

ଶ଴଴ଵݔ
ܽ

ൌ െ

െ2.3385 ∙ eെ3

1.73
6.9503 ∙ eെ3

2

ൌ 	0.3885 

 

  

 

 

 

 



Analytical results in comparison with numerical results for transverse tension 

 Figure 12. represents analytical results from compcomp in comparison with the result 

from Calculix. Lower bounds are identical with Mori-Tanaka estimates and numerical result 

lies in bounds range. That indicates correct results.. 

 

 

 
 Fig. 12. Comparison of the analytical and numerical results for transverse tension 

 
Analytical results in comparison with numerical results for transverse poisson ratio 

 Figure 13. represents analytical results from compcomp in comparison with the result 

from Calculix. Lower bound is negative and the upper bound in not identical with the Mori-

Tanaka estimate. Results were double checked but no mistake during obtaining the results 

from comcomp was noticed. 

  

 
 

Fig. 13. Comparison of the analytical and numerical results for transverse poisson ratio 



Unit cell deformation for transverse tension 

 On the figure 14. are displayed deformed and undeformed shape of the unit cell for 

transverse tension.  

 Similar to the longitudinal tension the deformed shape of the unit cell is a block.  Unit 

cell is extended in the transverse direction and compressed in longitudinal direction as well as 

in the direction normal to transverse direction. 

 
 

Fig. 14. Unit cell deformation for longitudinal tension 

 

 

 

 

 

 

 

Mean field stress in comparison with micro field stresses for transverse tension 

 On the figure 15. are shown micro stress field ߪ௧௧ and ߪ௤௤.Stress field ߪ௧௧ is in the 

direction of the loading. As before matrix has lower Young's modulus than fibers therefore 

higher stresses are in the fibers. 

 Stress field ߪ௤௤ is caused by poisson effect. Contraction causes compressive but also 

tensile components of micro-field in the areas where material properties are changing.  



 
Fig. 15.  ߪ௧௧ (left), ߪ௤௤ (right) for transverse tension 

 
 On the figure 16. are shown stress field ߪ௟௟ and ߪ௧௤.Stress field ߪ௟௟ is also caused by the 

poisson effect. High Young's modulus of the fibers causes compressive stresses in fibers and 

lower Young's modulus of the matrix causes tensile stresses in matrix. 

 Interesting are the shear stresses ߪ௧௤. Their intensity is high at the material borders 

 

 
Fig. 16.  ߪ௟௟ (left), ߪ௧௤ (right) for transverse tension 

 

 Mean stress for transverse tension is ߪ௧௧ ൌ 1.0205 ∙ ݁7	ܲܽ 



Longitudinal shear 

 Boundary conditions for master nodes are showed in the figure 17.  

Corresponding 
modulus 

Master nodes 
x-displacement 

[m] 
y-displacement 

[m] 
z-displacement 

[m] 

Glt 

1 (0,0,0) FIXED FIXED FIXED 
1348 (0, 1.73,0) FIXED FIXED FIXED 

2001 (2,0,0) FIXED FIXED LOAD 
10001 (0,0, 0.1) FREE FREE FIXED 

 
Fig. 17. Boundary conditions for longitudinal shear 

 

 Master nodes displacements are showed in the figure 18.: 

Corresponding 
modulus 

Master nodes 
x-displacement 

[m] 
y-displacement 

[m] 
z-displacement 

[m] 

Glt 

1 (0,0,0) 0 0 0 
1348 (0, 1.73,0) 0 0 0 

2001 (2,0,0) 0 0 1.7327e-02 
10001 (0,0, 0.1) 0 0 0 

 
Fig. 18. Master nodes displacements for longitudinal shear 

  

 Computation of the longitudinal shear modulus: 

 

ܨ
ܿ ∙ ܾ

ൌ ௟௧ܩ ∙
ଶ଴଴ଵݖ
ܽ

→ ௟௧ܩ ൌ
ܽ ∙ ܨ

ܿ ∙ ܾ ∙ ଶ଴଴ଵݖ
ൌ

2 ∙ 1,7675 ∙ ݁଺

0.1 ∙ 1.73 ∙ 1.7327 ∙ eିଶ
ൌ 1.1779 ∙ eଽ	ܲܽ 

 

 

 

 

 

 

 

 

 

 

 

 



Analytical results in comparison with numerical results for longitudinal shear 

 Figure 19. represents analytical results from compcomp in comparison with the result 

from Calculix. Lower bounds are identical with Mori-Tanaka estimates and numerical result 

lies in the bounds range. That indicates correct results. 

 

 Fig. 19. Comparison of the analytical and numerical results for longitudinal shear 
 
Unit cell deformation for longitudinal shear 

 On the figure 20. are displayed deformed and undeformed shape of the unit cell for 

longitudinal shear. 

 For longitudinal shear load case are the periodic boundary conditions easier to see. 

Their fulfillment is represented by colorful lines in the figure 20. 

 
Fig. 20. Unit cell deformation for longitudinal shear 



Mean field stress in comparison with micro field stresses for longitudinal shear. 

 On the figure 21. is shown the stress field ߪ௟௧. Stress field ߪ௟௧ shows higher shear stress 

components in the fibers 

 

 
Fig. 21. Stress field ߪ௟௧ for longitudinal shear. 

 

 Mean stress for longitudinal shear is ߪ௟௧ ൌ 1.0205 ∙ ݁7	ܲܽ. 

 

 

 



Transverse shear 

 Boundary conditions for master nodes are showed in the figure 22.  

Corresponding 
modulus 

Master nodes 
x-displacement 

[m] 
y-displacement 

[m] 
z-displacement 

[m] 

Gtq 

1 (0,0,0) FIXED FIXED FIXED 
1348 (0, 1.73,0) FIXED FIXED FIXED 

2001 (2,0,0) FIXED LOAD FIXED 
10001 (0,0, 0.1) FREE FREE FIXED 

 
Fig.22. Boundary conditions for transverse shear 

 

 Master nodes displacements are showed in the figure 23.: 

Corresponding 
modulus 

Master nodes 
x-displacement 

[m] 
y-displacement 

[m] 
z-displacement 

[m] 

Gtq 

1 (0,0,0) 0 0 0 
1348 (0, 1.73,0) 0 0 0 

2001 (2,0,0) 0 1.9301e-02 0 
10001 (0,0, 0.1) 0 0 0 

 
Fig.23. Master nodes displacements for transverse shear 

  

 Computation of the transverse shear modulus: 

 

ܨ
ܿ ∙ ܾ

ൌ ௧௤ܩ ∙
ଶ଴଴ଵݕ
ܽ

→ ௧௤ܩ ൌ
ܽ ∙ ܨ

ܿ ∙ ܾ ∙ ଶ଴଴ଵݕ
ൌ

2 ∙ 1,7675 ∙ ݁଺

0.1 ∙ 1.73 ∙ 1.9301 ∙ eିଷ
ൌ 1.0574 ∙ eଽ	ܲܽ 

 

 

 

 

 

 

 

 

 

 

 

 



Analytical results in comparison with numerical results for transverse shear 

 Figure 24. represents analytical results from compcomp in comparison with the result 

from Calculix. Lower bounds are identical with Mori-Tanaka estimates and numerical result 

lies in the bounds range. That indicates correct results. 

 

Fig. 24. Comparison of the analytical and numerical results for transverse shear 

 

Unit cell deformation for transverse shear 

 On the figure 25. are displayed deformed and undeformed shape of the unit cell for 

transverse shear. 

 Figure shows that most of the deformation is performed on the matrix due to lower 

stiffness and the fibers remain almost undeformed. 

 

 
 

Fig. 25. Unit cell deformation for transverse shear 



Mean field stress in comparison with micro field stresses for transverse shear. 

 On the figure 26. is shown stress field ߪ௧௤. Stress field ߪ௧௤ shows that ''stress belt'' of 

higher stress value is passing vertically between the fibers and has a peak value at the contact 

with the fiber.  

 

 
Fig. 26. Stress field ߪ௧௤ for transverse shear 

 

 Mean stress for transverse shear is ߪ௟௧ ൌ 1.0205 ∙ ݁7	ܲܽ. 

 

 



Coefficients of thermal expansion 

 The temperature difference was set to 1K for computational purposes. 

 Boundary conditions for master nodes are showed in the figure 27.  

Corresponding 
CTE 

Master nodes 
x-displacement 

[m] 
y-displacement 

[m] 
z-displacement 

[m] 

 ࢚ࢻ ,࢒ࢻ

1 (0,0,0) FIXED FIXED FIXED 
1348 (0, 1.73,0) FREE FREE FIXED 

2001 (2,0,0) FREE FIXED FIXED 
10001 (0,0, 0.1) FREE FREE FREE 

 
Fig. 27. Boundary conditions for the coefficients of the thermal expansion 

 

 Master nodes displacements are showed in the figure 28.: 

Corresponding 
CTE 

Master nodes 
x-displacement 

[m] 
y-displacement 

[m] 
z-displacement 

[m] 

 ࢚ࢻ ,࢒ࢻ

1 (0,0,0) 0 0 0 
1348 (0, 1.73,0) 0 1.5333e-04 0 

2001 (2,0,0) 1.7706e-04 0 0 
10001 (0,0, 0.1) 0 0 8.2006e-07 

 
Fig. 28. Master nodes displacements for the coefficients of the thermal expansion 

 

 General equation for CTE computation: 

 

௧௛ߝ ൌ ߙ ∙ ൫ܶ െ ௥ܶ௘௙൯ →
∆݈
݈
ൌ ߙ ∙ ൫ܶ െ ௥ܶ௘௙൯ → ߙ ൌ

∆݈

݈ ∙ ൫ܶ െ ௥ܶ௘௙൯
 

 

 Computation of the longitudinal CTE: 

 

௟ߙ ൌ
ଵ଴଴଴ଵݖ

ܿ ∙ ൫ܶ െ ௥ܶ௘௙൯
ൌ

8.2006 ∙ ݁ି଻

0.1 ∙ ሺ274 െ 273ሻ
ൌ 8.2006 ∙ ݁ି଺ିܭଵ	

 

 Computation of the transverse CTE: 

 

௧ߙ ൌ ௤ߙ ൌ
ଶ଴଴ଵݔ

ܽ ∙ ൫ܶ െ ௥ܶ௘௙൯
ൌ

ଵଷସ଼ݕ
ܾ ∙ ൫ܶ െ ௥ܶ௘௙൯

ൌ
1.7706 ∙ ݁ିସ

2 ∙ 1
ൌ
1.5333 ∙ ݁ିସ

1.73 ∙ 1
ൌ 8.85 ∙ ݁ିହିܭଵ 

 



Analytical results in comparison with numerical results for thermal load cases 

 Figure 29. represents analytical results from compcomp in comparison with the result 

from Calculix. Compcomp did not provide results for CTE values of the bounds therefore 

only Mori-Tanaka estimates are displayed. Assuming that the lower bound is identical with 

Mori- Tanaka estimates for longitudinal CTE, than numerical results lies in the bounds range 

and that indicates correct result 

 
 

Fig. 29. Comparison of the analytical and numerical results longitudinal CTE 

 

 Figure 30. represents analytical results from compcomp in comparison with the result 

from Calculix. Compcomp did not provide results for CTE values of the bounds therefore 

only Mori-Tanaka estimates are displayed. Assuming that the higher bound is identical with 

Mori- Tanaka estimates for transverse CTE, than numerical results lies in the bounds range 

and that indicates correct result 

 
  
  Fig. 30. Comparison of the analytical and numerical results longitudinal CTE	



Unit cell deformation for thermal loading 

 On the figure 31. are displayed deformed and undeformed shape of the unit cell for 

thermal load case. 

 Figure shows that the unit cell is expanded in all directions  

 
Fig. 31. Unit cell deformation for thermal load case 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Mean field stress in comparison with micro field stresses for thermal load case 

 On the figure 34. are shown micro stress field ߪ௧௧ and ߪ௤௤.Matrix has the CTE much 

higher than fibers also the arrangement of boundary conditions of master nodes and the 

difference in the stiffness causes that fibers are under higher stress than the matrix is. There 

are also locations where in the matrix compressed. 

 Figure 35.shows Von Mises equivalent stresses and ߪ௟௟ 

 

 
Fig. 34.  ߪ௧௧ (left), ߪ௤௤ (right) for thermal load case 

 

 
Fig. 35.  ߪ௟௟ (left), Von Mises (right) for thermal load case 

 



Summary 

 Sufficient number of material properties to describe transverse isotropic material were 

calculated by numerical approach and compared to results from analytical approach. 

 Numerical results matched the analytical results in all load cases satisfyingly with 

respect to the position in the range of the Hashin-Shtrikman bounds. Periodic and symmetry 

boundary conditions as well as the micro stress field were discussed. 

 Problems have occurred by analytical results for transverse poisson ratio where lower 

bounds were negative and upper bounds did not match the Mori-Tanaka estimates. Despite 

this problem was the numerical results close to Mori-Tanaka estimate. 

 


