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Problem description:

The main goal of this work is to evaluate the material properties of uni-directional

glass-epoxy composite. To estimate this properties, analytical and finite element approach

were chosen.

Analytical approach represents the methods of Mori-Tanaka and Hashin-Shtrikman

bounds. To compute required material

computations (Compcomp) was used.

properties, provided software for analytical

Finite element approach is based on periodic homogenization. Proper periodicity and

symmetry boundary conditions were applied on the unit cell and sufficient number of

independent material parameters were estimated. For this purpose was used a finite element

software (Calculix).

Glass fibers and epoxy matrix are isotropic materials and their elastic and thermal

material properties are shown in fig. 1. The fiber volume fraction is 0.4.

Glass Epoxy
Elastic modulus CTE Poisson constant Elastic modulus CTE Poisson constant
[GPa] [KY] [-] [GPa] [K™] [-]
80 4910° 0.2 1.35 130 10°® 0.3

Fig. 1. Material parameters of the glass-epoxy composite

Figure 2. represent examinated unit cell with its characteristic dimension and master nodes:
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Fig. 2. Unit cell dimensions and master nodes
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Longitudinal tension
Boundary conditions for master nodes are showed in the figure 3. Note that load is for

every load case equal F = 1767,5 KN.

Corresponding Master nodes x-displacement | y-displacement | z-displacement
modulus [m] [m] [m]
1(0,0,0) FIXED FIXED FIXED
E, 1348 (0, 1.73,0) FIXED FREE FIXED
2001 (2,0,0) FREE FIXED FIXED
10001 (0,0, 0.1) FREE FREE LOAD

Fig. 3. Boundary conditions for longitudinal tension

Master nodes displacements are showed in the figure 4.:

Corresponding Master nodes x-displacement | y-displacement | z-displacement
modulus [m] [m] [m]
1(0,0,0) 0 0 0
E, 1348 (0, 1.73,0) 0 -6.7850e-06 0
2001 (2,0,0) -7.8347e-06 0 0
10001 (0,0, 0.1) 0 0 1.5549¢-06

Fig. 4. Master nodes displacements for longitudinal tension

Computation of the longitudinal tension modulus:

] 210001 Cc* F 01 " 1,7675 - 86

= = = 3.2815-¢%P
c L a- b " Z10001 2-1.73-1.5549 - e_6 ¢ a

F =F
a-b

Computation of the longitudinal poisson ratio:

V1348 —6.7850 - 9_6
__&e_ b _ 1.73 _
Va = ey Z10001 15549 :e6 0.2519
c /01

0.1



Analytical results in comparison with numerical results for longitudinal tension

Figure 5. represents analytical results from compcomp in comparison with the result
from Calculix. As was expected lower bounds are identical with Mori-Tanaka estimates and
numerical result lies in the bounds range. That indicates correct results..

The difference between lower and upper bounds is for longitudinal elastic modulus
very small and in whole fiber volume scale almost identical, therefore zoomed scale was

chosen to show results adequately.
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Fig. 5. Comparison of the analytical and numerical results for longitudinal tension

Analytical results in comparison with numerical results for longitudinal poisson ratio
Figure 6. represents analytical results from compcomp in comparison with the result
from Calculix. Upper bounds are identical with Mori-Tanaka estimates and numerical result

lies in the bounds range. That indicates correct results.
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Fig. 6. Comparison of the analytical and numerical results for longitudinal poisson ratio



Unit cell deformation for longitudinal tension

On the figure 7. are displayed deformed and undeformed shape of the unit cell for
longitudinal tension.

Applied force in longitudinal direction extends the unit cell and the contraction in the
transverse direction and in the direction normal to the transverse direction is caused by
poisson effect.

Shape of the unit cell is block after the deformation so the periodic and symmetry
boundary conditions are fulfilled.

Deformed shape is scaled with factor of 100 000 to make the deformation visible.
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Fig. 7. Unit cell deformation for longitudinal tension

Mean field stress in comparison with micro field stresses for longitudinal tension

On the figure 8. are shown micro stress fields o;; and o;,. Due to the periodic
boundary condition and boundary conditions that represent longitudinal tension have to be
fibers and matrix deformed by equal length.

Since the matrix has lower Young's modulus than fibers, resulting stresses are higher
in fibers and lower in matrix. Mentioned boundary conditions and differences in Young's

modulus of the fibers and matrix causes also shear stresses in the unit cell
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Fig. 8. Micro field stresses for longitudinal tension oy, (left), a;4(right)

Figure 9. represents the micro field stresses o, and g,,. Poisson effect boundary

conditions and differences in stiffness of the matrix and the fibers causes stress distribution

where fibers are compressed and matrix tensed.
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Fig. 9. Micro field stresses for longitudinal tension oy, (left), a,4(right)

Mean stress in longitudinal direction is g;; = 5.1023 - e>Pa. | comparison with the

stress range by micro field stress is visible the effect of the homogenization.



Transverse tension

Boundary conditions for master nodes are showed in the figure 10.

Corresponding

Master nodes x-displacement | y-displacement | z-displacement
modulus [m] [m] [m]
1(0,0,0) FIXED FIXED FIXED
£ 1348 (0, 1.73,0) FIXED FREE FIXED
' 2001 (2,0,0) LOAD FIXED FIXED
10001 (0,0, 0.1) FREE FREE FREE

Fig. 10. Boundary conditions for transverse tension

Master nodes displacements are showed in the figure 11.:

Corresponding

Master nodes x-displacement | y-displacement | z-displacement
modulus [m] [m] [m]
1(0,0,0) 0 0 0
£ 1348 (0, 1.73,0) 0 -2.3386e-03 0
' 2001 (2,0,0) 6.9503e-03 0 0
10001 (0,0, 0.1) 0 0 -7.8347e-06

C*

Fig. 11. Master nodes displacements for transverse tension

Computation of the transverse tension modulus:

2-1,7675 - e

£ b %ye; 0.1-1.73-6.9503 e 3

= 0.3885

X a*F

= E, - 2001 _
b a

Computation of the transverse poisson ratio:
y1348 —2.3385 - e_3
_%a_ b _ _ 1.73
g X2001 6.9503 - 3
7 2700 ¢€

2

= 2.9365 - ¢ Pa




Analytical results in comparison with numerical results for transverse tension
Figure 12. represents analytical results from compcomp in comparison with the result
from Calculix. Lower bounds are identical with Mori-Tanaka estimates and numerical result

lies in bounds range. That indicates correct results..
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Fig. 12. Comparison of the analytical and numerical results for transverse tension

Analytical results in comparison with numerical results for transverse poisson ratio
Figure 13. represents analytical results from compcomp in comparison with the result

from Calculix. Lower bound is negative and the upper bound in not identical with the Mori-

Tanaka estimate. Results were double checked but no mistake during obtaining the results

from comcomp was noticed.
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Fig. 13. Comparison of the analytical and numerical results for transverse poisson ratio



Unit cell deformation for transverse tension

On the figure 14. are displayed deformed and undeformed shape of the unit cell for
transverse tension.

Similar to the longitudinal tension the deformed shape of the unit cell is a block. Unit
cell is extended in the transverse direction and compressed in longitudinal direction as well as

in the direction normal to transverse direction.

+0ispf:10.000000

Fig. 14. Unit cell deformation for longitudinal tension

Mean field stress in comparison with micro field stresses for transverse tension
On the figure 15. are shown micro stress field a;; and o,,.Stress field oy, is in the
direction of the loading. As before matrix has lower Young's modulus than fibers therefore

higher stresses are in the fibers.
Stress field o, is caused by poisson effect. Contraction causes compressive but also

tensile components of micro-field in the areas where material properties are changing.
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Fig. 15. oy, (left), o4, (right) for transverse tension

On the figure 16. are shown stress field g;; and o,.Stress field oy, is also caused by the
poisson effect. High Young's modulus of the fibers causes compressive stresses in fibers and
lower Young's modulus of the matrix causes tensile stresses in matrix.

Interesting are the shear stresses o,. Their intensity is high at the material borders
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Fig. 16. oy, (left), o, (right) for transverse tension

Mean stress for transverse tension is o, = 1.0205 - e’ Pa



Longitudinal shear

Boundary conditions for master nodes are showed in the figure 17.

Corresponding

Master nodes

x-displacement

y-displacement

z-displacement

modulus [m] [m] [m]
1(0,0,0) FIXED FIXED FIXED
G 1348 (0, 1.73,0) FIXED FIXED FIXED
" 2001 (2,0,0) FIXED FIXED LOAD
10001 (0,0, 0.1) FREE FREE FIXED

Fig. 17. Boundary conditions for longitudinal shear

Master nodes displacements are showed in the figure 18.:

Corresponding Master nodes x-displacement | y-displacement | z-displacement
modulus [m] [m] [m]
1(0,0,0) 0 0 0
G 1348 (0, 1.73,0) 0 0 0
. 2001 (2,0,0) 0 0 1.7327e-02
10001 (0,0, 0.1) 0 0 0
Fig. 18. Master nodes displacements for longitudinal shear
Computation of the longitudinal shear modulus:
F 2001 a'F 2'1,7675'86
— -G =Gy = = =1.1779-¢€° Pa
c-b  H e b2y, 0.1-1.73-1.7327 €72



Analytical results in comparison with numerical results for longitudinal shear
Figure 19. represents analytical results from compcomp in comparison with the result
from Calculix. Lower bounds are identical with Mori-Tanaka estimates and numerical result

lies in the bounds range. That indicates correct results.
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Fig. 19. Comparison of the analytical and numerical results for longitudinal shear

Unit cell deformation for longitudinal shear

On the figure 20. are displayed deformed and undeformed shape of the unit cell for
longitudinal shear.

For longitudinal shear load case are the periodic boundary conditions easier to see.

Their fulfillment is represented by colorful lines in the figure 20.
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Fig. 20. Unit cell deformation for longitudinal shear



Mean field stress in comparison with micro field stresses for longitudinal shear.
On the figure 21. is shown the stress field o;;. Stress field a;, shows higher shear stress

components in the fibers
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Fig. 21. Stress field gy, for longitudinal shear.

Mean stress for longitudinal shear is g;; = 1.0205 - ¢’ Pa.



Transverse shear

Boundary conditions for master nodes are showed in the figure 22.

Corresponding

Master nodes

x-displacement

y-displacement

z-displacement

modulus [m] [m] [m]
1(0,0,0) FIXED FIXED FIXED
G 1348 (0, 1.73,0) FIXED FIXED FIXED
1 2001 (2,0,0) FIXED LOAD FIXED
10001 (0,0, 0.1) FREE FREE FIXED

Fig.22. Boundary conditions for transverse shear

Master nodes displacements are showed in the figure 23.:

Corresponding Master nodes x-displacement | y-displacement | z-displacement
modulus [m] [m] [m]
1(0,0,0) 0 0 0
G 1348 (0, 1.73,0) 0 0 0
a 2001 (2,0,0) 0 1.9301e-02 0
10001 (0,0, 0.1) 0 0 0
Fig.23. Master nodes displacements for transverse shear
Computation of the transverse shear modulus:
F y2001 a: F 2 " 1,7675 - 86
c-b M g ¥4 ¢ b y,00; 0.1-1.73-1.9301-e73




Analytical results in comparison with numerical results for transverse shear

Figure 24. represents analytical results from compcomp in comparison with the result

from Calculix. Lower bounds are identical with Mori-Tanaka estimates and numerical result

lies in the bounds range. That indicates correct results.

Effective transverse shear modulus Gtq [Pa)

Unit cell deformation for transverse shear
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Fig. 24. Comparison of the analytical and numerical results for transverse shear

On the figure 25. are displayed deformed and undeformed shape of the unit cell for

transverse shear.

Figure shows that most of the deformation is performed on the matrix due to lower

stiffness and the fibers remain almost undeformed.
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Fig. 25. Unit cell deformation for transverse shear



Mean field stress in comparison with micro field stresses for transverse shear.
On the figure 26. is shown stress field ;. Stress field o;, shows that "stress belt" of

higher stress value is passing vertically between the fibers and has a peak value at the contact
with the fiber.
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Fig. 26. Stress field o, for transverse shear

Mean stress for transverse shear is g;; = 1.0205 - ¢’ Pa.



Coefficients of thermal expansion

The temperature difference was set to 1K for computational purposes.

Boundary conditions for master nodes are showed in the figure 27.

Correspondin x-displacement -displacement | z-displacement
C'FI)'E g Master nodes p[m] y p[m] p[m]
1(0,0,0) FIXED FIXED FIXED
1348 (0, 1.73,0) FREE FREE FIXED
v e 2001 (2,0,0) FREE FIXED FIXED
10001 (0,0, 0.1) FREE FREE FREE

Fig. 27. Boundary conditions for the coefficients of the thermal expansion

Master nodes displacements are showed in the figure 28.:

Corresponding x-displacement | y-displacement | z-displacement
CTE Master nodes [m] (m] [m]
1(0,0,0) 0 0 0
o a 1348 (0, 1.73,0) 0 1.5333e-04 0
b 2001 (2,0,0) 1.7706e-04 0 0
10001 (0,0, 0.1) 0 0 8.2006e-07
Fig. 28. Master nodes displacements for the coefficients of the thermal expansion
General equation for CTE computation:
Al Al
gn=a'(T—-T, >—=a-(T-T - =—
th ( ref) l ( ref) l . (T _ Tref)
Computation of the longitudinal CTE:
210001 82006 - 8_7 _ _
a, = = =8.2006-e %K1
L e (T =They) 0.1-(274-273)
Computation of the transverse CTE:
x 1.7706-e™* 1.5333-e¢7*
4 =« 2001 V1348 _ _ — 885 e-5K-1

1T 4 (T—Try) b-(T—Twy)  2-1 1731



Analytical results in comparison with numerical results for thermal load cases

Figure 29. represents analytical results from compcomp in comparison with the result
from Calculix. Compcomp did not provide results for CTE values of the bounds therefore
only Mori-Tanaka estimates are displayed. Assuming that the lower bound is identical with
Mori- Tanaka estimates for longitudinal CTE, than numerical results lies in the bounds range
and that indicates correct result
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Fig. 29. Comparison of the analytical and numerical results longitudinal CTE

Figure 30. represents analytical results from compcomp in comparison with the result
from Calculix. Compcomp did not provide results for CTE values of the bounds therefore
only Mori-Tanaka estimates are displayed. Assuming that the higher bound is identical with
Mori- Tanaka estimates for transverse CTE, than numerical results lies in the bounds range
and that indicates correct result
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Fig. 30. Comparison of the analytical and numerical results longitudinal CTE
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Unit cell deformation for thermal loading
On the figure 31. are displayed deformed and undeformed shape of the unit cell for
thermal load case.

Figure shows that the unit cell is expanded in all directions
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Fig. 31. Unit cell deformation for thermal load case



Mean field stress in comparison with micro field stresses for thermal load case

On the figure 34. are shown micro stress field o,, and o,,.Matrix has the CTE much
higher than fibers also the arrangement of boundary conditions of master nodes and the
difference in the stiffness causes that fibers are under higher stress than the matrix is. There
are also locations where in the matrix compressed.

Figure 35.shows VVon Mises equivalent stresses and oy,
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Fig. 35. oy (left), Von Mises (right) for thermal load case



Summary

Sufficient number of material properties to describe transverse isotropic material were
calculated by numerical approach and compared to results from analytical approach.

Numerical results matched the analytical results in all load cases satisfyingly with
respect to the position in the range of the Hashin-Shtrikman bounds. Periodic and symmetry
boundary conditions as well as the micro stress field were discussed.

Problems have occurred by analytical results for transverse poisson ratio where lower
bounds were negative and upper bounds did not match the Mori-Tanaka estimates. Despite

this problem was the numerical results close to Mori-Tanaka estimate.



